A hybrid degradation modeling of light-emitting diode using permutation entropy and data-driven methods

Conference Paper (2021)
Author(s)

Minzhen Wen (Fudan University)

Zhou Jing (Hohai University)

Mesfin Seid Ibrahim (Wollo University)

Jiajie Fan (TU Delft - Electronic Components, Technology and Materials, Fudan University)

Guogi Zhang (TU Delft - Electronic Components, Technology and Materials, Shenzhen Institute of Wide-bandgap Semiconductors)

Research Group
Electronic Components, Technology and Materials
DOI related publication
https://doi.org/10.1109/ICEPT52650.2021.9568181
More Info
expand_more
Publication Year
2021
Language
English
Research Group
Electronic Components, Technology and Materials
ISBN (print)
978-1-6654-1392-3
ISBN (electronic)
978-1-6654-1391-6

Abstract

The LED degradation failure is highly dependent on temperature and this degradation failure is an irreversible energy dissipation process in thermodynamics. In this paper, the entropy generation is used to quantify the energy dissipation, which is regarded as one of the main performance characteristics of LED's degradation process. Considering the thermodynamic characteristics of entropy generation in the LED failure, a hybrid degradation prediction model based on the permutation entropy (PE) and data-driven methods was proposed. Firstly, a thermal aging test was designed for white LEDs in which the entropy generation rates (EGRs) of LEDs were extracted from the online collected thermoelectric performance parameters. Then, the EGRs of LEDs were treated as a time-series signal to perform phase space reconstruction and calculate PEs. Finally, both neural network model and Wiener process based data-driven methods were used to process the PEs. This hybrid model links the thermodynamic entropy of LEDs with its optical performance. The results show that: (1) Entropy generation based on thermodynamics can characterize the degradation process of LEDs; (2) The proposed hybrid degradation prediction model based on the PE and Wiener method can achieve early failure warning of LEDs before the actual failure occurs.

No files available

Metadata only record. There are no files for this record.