Scalable Quantum Circuit and Control for a Superconducting Surface Code

Journal Article (2017)
Authors

R. Versluis (TU Delft - BUS/General, TNO, TU Delft - QuTech Advanced Research Centre)

S. Poletto (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/DiCarlo Lab, TU Delft - QN/Kavli Nanolab Delft)

N. Khammassi (FTQC/Bertels Lab)

Brian Tarasinski (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/DiCarlo Lab)

S.N. Haider (TNO, TU Delft - QuTech Advanced Research Centre, TU Delft - BUS/General)

David J. Michalak (Intel Labs)

A. Bruno (QN/Quantum Transport, Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QCD/DiCarlo Lab)

K.L.M. Bertels (Kavli institute of nanoscience Delft, FTQC/Bertels Lab, TU Delft - Quantum & Computer Engineering)

L. Dicarlo (Kavli institute of nanoscience Delft, TU Delft - QCD/DiCarlo Lab, TU Delft - QN/DiCarlo Lab, TU Delft - QuTech Advanced Research Centre)

Research Group
BUS/General
Copyright
© 2017 R. Versluis, S. Poletto, N. Khammassi, B.M. Tarasinski, S.N. Haider, D.J. Michalak, A. Bruno, K.L.M. Bertels, L. DiCarlo
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 R. Versluis, S. Poletto, N. Khammassi, B.M. Tarasinski, S.N. Haider, D.J. Michalak, A. Bruno, K.L.M. Bertels, L. DiCarlo
Research Group
BUS/General
Issue number
3
Volume number
8
Pages (from-to)
034021/1-034021/7
DOI:
https://doi.org/10.1103/PhysRevApplied.8.034021
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We present a scalable scheme for executing the error-correction cycle of a monolithic surface-code fabric composed of fast-flux-tunable transmon qubits with nearest-neighbor coupling. An eight-qubit unit cell forms the basis for repeating both the quantum hardware and coherent control, enabling spatial multiplexing. This control uses three fixed frequencies for all single-qubit gates and a unique frequency-detuning pattern for each qubit in the cell. By pipelining the interaction and readout steps of ancilla-based X- and Z-type stabilizer measurements, we can engineer detuning patterns that avoid all second-order transmon-transmon interactions except those exploited in controlled-phase gates, regardless of fabric size. Our scheme is applicable to defect-based and planar logical qubits, including lattice surgery.

Files

PhysRevApplied.8.034021.pdf
(pdf | 0.516 Mb)
License info not available