Towards constraining soil and vegetation dynamics in land surface models

Modeling ASCAT backscatter incidence-angle dependence with a Deep Neural Network

Journal Article (2022)
Author(s)

X. Shan (TU Delft - Water Resources)

SC Steele-Dunne (TU Delft - Mathematical Geodesy and Positioning)

M. Huber (TU Delft - Water Resources)

Sebastian Hahn (Technische Universität Wien)

Wolfgang Wagner (Technische Universität Wien)

Bertrand Bonan (Université de Toulouse)

Clément Albergel (Université de Toulouse)

Jean-Christophe Calvet (Université de Toulouse)

Ou Ku (Netherlands eScience Center)

Sonja Georgievska (Netherlands eScience Center)

Research Group
Water Resources
Copyright
© 2022 X. Shan, S.C. Steele-Dunne, M. Huber, Sebastian Hahn, Wolfgang Wagner, Bertrand Bonan, Clement Albergel, Jean-Christophe Calvet, Ou Ku, Sonja Georgievska
DOI related publication
https://doi.org/10.1016/j.rse.2022.113116
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 X. Shan, S.C. Steele-Dunne, M. Huber, Sebastian Hahn, Wolfgang Wagner, Bertrand Bonan, Clement Albergel, Jean-Christophe Calvet, Ou Ku, Sonja Georgievska
Research Group
Water Resources
Volume number
279
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

A Deep Neural Network (DNN) is used to estimate the Advanced Scatterometer (ASCAT) C-band microwave normalized backscatter (σ40o), slope (σ′) and curvature (σ″) over France. The Interactions between Soil, Biosphere and Atmosphere (ISBA) land surface model (LSM) is used to produce land surface variables (LSVs) that are input to the DNN. The DNN is trained to simulate σ40o, σ′ and σ″ from 2007 to 2016. The predictive skill of the DNN is evaluated during an independent validation period from 2017 to 2019. Normalized sensitivity coefficients (NSCs) are computed to study the sensitivity of ASCAT observables to changes in LSVs as a function of time and space. Model performance yields a near-zeros bias in σ40o and σ′. The domain-averaged values of ρ are 0.84 and 0.85 for σ40o and σ′, compared to 0.58 for σ″. The domain-averaged unbiased RMSE is 8.6% of the dynamic range for σ40o and 13% for σ′, with land cover having some impact on model performance. NSC results show that the DNN-based model could reproduce the physical response of ASCAT observables to changes in LSVs. Results indicated that σ40o is sensitive to surface soil moisture and LAI and that these sensitivities vary with time, and are highly dependent on land cover type. The σ′ was shown to be sensitive to LAI, but also to root zone soil moisture due to the dependence of vegetation water content on soil moisture. The DNN could potentially serve as an observation operator in data assimilation to constrain soil and vegetation water dynamics in LSMs.