DC-DC Converters for Bipolar Microgrid Voltage Balancing

A Comprehensive Review of Architectures and Topologies

Journal Article (2023)
Author(s)

V. Fernao Pires (Escola Superior Saúde-Instituto Politécnico de Setúbal)

A. Cordeiro (INESC-ID)

C. Roncero-Clemente (University of Extremadura)

Sebastian Rivera (Universidad de los Andes, Chile)

Tomislav Dragicevic (Technical University of Denmark (DTU))

Affiliation
External organisation
DOI related publication
https://doi.org/10.1109/JESTPE.2022.3208689
More Info
expand_more
Publication Year
2023
Language
English
Affiliation
External organisation
Issue number
1
Volume number
11
Pages (from-to)
981-998

Abstract

DC microgrids initiated the change of a paradigm regarding the concept about electrical distribution networks, especially in the context of the distributed generation associated with renewable energies. However, this new reality opens a new area of research, in which several aspects must be carefully studied. Indeed, the bipolar design is one of the principal dc microgrid configurations considering its characteristic wiring. Although holding many promising advantages, the bipolar dc microgrid has a tendency toward voltage and current imbalances due to the unequal distribution of the loads and generators between the two poles. Thus, specific power electronic-based solutions are required to ensure the balance of these dc microgrids. Within this frame, this article gives a comprehensive review of the multiple architectures and power electronic topologies proposed to mitigate/eliminate this undesired condition. The following provides an insightful classification and discussion with the pros and cons of these solutions. This work can serve as a timely review for researcher/engineers who want to enter the voltage balancing field in the bipolar dc grids and promote the innovation of their power electronics-enabled solutions.

No files available

Metadata only record. There are no files for this record.