A variational approach to determine the optimal power distribution for cycling in a time trial
J. de Jong (Universiteit Utrecht)
Robbert Fokkink (TU Delft - Applied Probability)
GJ Olsder (TU Delft - Discrete Mathematics and Optimization)
A.L. Schwab (TU Delft - Biomechatronics & Human-Machine Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The optimal pacing strategy of a cyclist in an individual time-trial depends on terrain, weather conditions and the cyclists endurance capacity. Previous experimental and theoretical studies have shown that a suboptimal pacing strategy may have a substantial negative effect. In this paper we express the optimal pacing problem as a mathematical optimal control problem which we solve using Pontryagin's maximum principle. Our solution of the pacing problem is partly numerical and partly analytical. It applies to a straight course without bends. It turns out that the optimal pacing problem is a singular control problem. Intricate mathematical arguments are required to prove that the singular control times form a single interval: optimal pacing starts with maximum power and decays through a singular control, which may be degenerate, to minimum power.