A ±4-A High-Side Current Sensor With 0.9% Gain Error From −40 °C to 85 °C Using an Analog Temperature Compensation Technique
Long Xu (TU Delft - Electronic Instrumentation)
Johan H Huijsing (TU Delft - Electronic Instrumentation)
K.A.A Kofi (TU Delft - Microelectronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a fully integrated shunt-based current sensor that supports a 25-V input common-mode range while operating from a single 1.5-V supply. It uses a highvoltage beyond-the-rails ADC to directly digitize the voltage across an on-chip shunt resistor. To compensate for the shunt’s large temperature coefficient of resistance (∼0.335%/°C), the
ADC employs a proportional-to-absolute-temperature voltage reference. This analog compensation scheme obviates the need for the explicit temperature sensor and calibration logic required by digital compensation schemes. The sensor achieves 1.5-μVrms noise over a 2-ms conversion time while drawing only 10.9 μA from a 1.5-V supply. Over a ±4-A range, and after a one-point trim, the sensor exhibits a 0.9% (maximum) gain error from −40 °C to 85 °C and a 0.05% gain error at room temperature.