Fatigue delamination behavior in composite laminates at different stress ratios and temperatures

More Info
expand_more

Abstract

This study provides an investigation on mode I fatigue delamination growth (FDG) with fibre bridging at different R-ratios and temperatures in carbon-fibre reinforced polymer composites. FDG experiments were first conducted at different temperatures of R-ratios 0.1 and 0.5 via unidirectional double cantilever beam (DCB) specimens. A fatigue model, employing both the strain energy release rate (SERR) range and the maximum SERR around crack front as similitude parameter, was proposed to interpret FDG behavior. The use of this model can collapse FDG data with fibre bridging at different R-ratios into one master curve, obeying well with the similitude principles. Accordingly, it was found that FDG can accelerate with elevated temperature, but decrease at sub-zero temperature. Furthermore, there are strong correlations between the fatigue model parameters and temperature using this model in FDG interpretations. Taking these correlations into account can extend the model to accurately predict FDG behavior of other temperatures. Fractographic examinations demonstrated that temperature has effects on the FDG damage mechanisms. Both fibre/matrix interfacial debonding and matrix brittle failure were observed in FDG of −40℃. Fibre/matrix interfacial debonding becomes the dominant failure in FDG of RT and 80℃. No obvious difference on the fracture morphology was identified for FDG at different R-ratios of a given temperature.