A study of lattice reformulations for integer programming
K. Aardal (TU Delft - Discrete Mathematics and Optimization)
L.V. Scavuzzo Montaña (TU Delft - Discrete Mathematics and Optimization)
Laurence A Wolsey (Université Catholique de Louvain)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Branch-and-bound for integer optimization typically uses single-variable disjunctions. Enumerative methods for integer optimization with theoretical guarantees use a non-binary search tree with general disjunctions based on lattice structure. These disjunctions are expensive to compute and challenging to implement. Here we compare two lattice reformulations that can be used to heuristically obtain general disjunctions in the original space, we develop a new lattice-based variant, and compare the derived disjunctions computationally with those produced by the algorithm of Lovász and Scarf.