Distributed multi-robot formation splitting and merging in dynamic environments
H. Zhu (TU Delft - Learning & Autonomous Control)
Jelle Juhl (Student TU Delft)
Laura Ferranti (TU Delft - Intelligent Vehicles)
J. Alonso-Mora (TU Delft - Learning & Autonomous Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a distributed method for splitting and merging of multi-robot formations in dynamic environments with static and moving obstacles. Splitting and merging actions rely on distributed consensus and can be performed to avoid obstacles. Our method accounts for the limited communication range and visibility radius of the robots and relies on the communication of obstacle-free convex regions and the computation of an intersection graph. In addition, our method is able to detect and recover from (permanent and temporary) communication and motion faults. Finally, we demonstrate the applicability and scalability of the proposed method in simulations with up to sixteen quadrotors and real-world experiments with a team of four quadrotors.