Enhanced Optimal Power Flow Based Droop Control in MMC-MTDC Systems
Hongjin Du (TU Delft - Intelligent Electrical Power Grids)
Rashmi Prasad (TU Delft - Intelligent Electrical Power Grids)
Aleksandra Lekić (TU Delft - Intelligent Electrical Power Grids)
Pedro P. Vergara Barrios (TU Delft - Intelligent Electrical Power Grids)
Peter Palensky (TU Delft - Electrical Sustainable Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Optimizing operational set points for modular multilevel converters (MMCs) in Multi-Terminal Direct Current (MTDC) transmission systems is crucial for ensuring efficient power distribution and control. This paper presents an enhanced Optimal Power Flow (OPF) model for MMC-MTDC systems, integrating a novel adaptive voltage droop control strategy. The strategy aims to minimize generation costs and DC voltage deviations while ensuring the stable operation of the MTDC grid by dynamically adjusting the system operation points. The modified Nordic 32 test system with an embedded 4-terminal DC grid is modeled in Julia and the proposed control strategy is applied to the power model. The results demonstrate the feasibility and effectiveness of the proposed droop control strategy, affirming its potential value in enhancing the performance and reliability of hybrid AC-DC power systems.
Files
File under embargo until 01-09-2025