Assessing Energy Storage Requirements Based on Accepted Risks
Michael Evans (Imperial College London)
Simon Tindemans (TU Delft - Intelligent Electrical Power Grids)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a framework for deriving the storage capacity that an electricity system requires in order to satisfy a chosen risk appetite. The framework takes as inputs user-defined event categories, parameterised by peak power-not-served, acceptable number of events per year and permitted probability of exceeding these constraints, and returns as an output the total capacity of storage that is needed. For increased model accuracy, our methodology incorporates multiple nodes with limited transfer capacities, and we provide a foresight-free dispatch policy for application to this setting. Finally, we demonstrate the chance-constrained capacity determination via application to a model of the British network.