Instance stixels
Segmenting and grouping stixels into objects
T.M. Hehn (TU Delft - Intelligent Vehicles)
J.F.P. Kooij (TU Delft - Intelligent Vehicles)
D. Gavrila (TU Delft - Intelligent Vehicles)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
State-of-the-art stixel methods fuse dense stereo and semantic class information, e.g. from a Convolutional Neural Network (CNN), into a compact representation of driveable space, obstacles, and background. However, they do not explicitly differentiate instances within the same class. We investigate several ways to augment single-frame stixels with instance information, which can similarly be extracted by a CNN from the color input. As a result, our novel Instance Stixels method efficiently computes stixels that do account for boundaries of individual objects, and represents individual instances as grouped stixels that express connectivity. Experiments on Cityscapes demonstrate that including instance information into the stixel computation itself, rather than as a post-processing step, increases Instance AP performance with approximately the same number of stixels. Qualitative results confirm that segmentation improves, especially for overlapping objects of the same class. Additional tests with ground truth instead of CNN output show that the approach has potential for even larger gains. Our Instance Stixels software is made freely available for non-commercial research purposes.