Collective Decision Making through Self-regulation
Mechanisms and Algorithms for Self-regulation in Decision-Theoretic Planning
Joris Scharpff (TU Delft - Algorithmics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This thesis explores the potential of self-regulation in collective decision making to align interests and optimise joint performance. Demonstrated in the domain of road maintenance planning, this research contributes novel incentive mechanisms and algorithmic techniques to incite self-regulation and coordinate agent interactions, paired with a practical validation of the concept through serious gaming. The learnings of this work guide the design and implementation of future performance-based partnerships and advance the current state-of-the-art in sequential decision
making.