Spatial Variations of Antarctic Intermediate Water in the Caribbean Sea Due To Vertical Mixing Along Its Path
Carine G. van der Boog (California Institute of Technology, TU Delft - Environmental Fluid Mechanics)
Henk Dijkstra (Universiteit Utrecht)
J.D. Pietrzak (TU Delft - Environmental Fluid Mechanics)
C.A. Katsman (TU Delft - Environmental Fluid Mechanics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Because of its pronounced fresh signature, the properties of the northward-flowing Antarctic Intermediate Water (AAIW) affect the Atlantic Meridional Overturning Circulation. Hence, understanding modifications of AAIW along its path is important. Here, we analyze AAIW changes along its path in the Caribbean Sea and assess whether vertical fluxes from background turbulence and from double-diffusive mixing in thermohaline staircases can explain these variations. We deduce the occurrence rate of staircases (7%) and estimate the flux ratio (Formula presented.) from Argo float profiles. In combination with vertical fluxes from background turbulence, these values are used in a steady-state advection-diffusion model to estimate the effective diffusivity of salt that arises from double diffusion (Formula presented.). This value for (Formula presented.) is similar to observed values (Schmitt, 2005, https://doi.org/10.1126/science.1108678), implying the observed modification of AAIW in the Caribbean Sea may be attributable primarily to vertical mixing in the region itself.