Clustering Rooftop PV Systems via Probabilistic Embeddings
K. Bölat (TU Delft - Intelligent Electrical Power Grids)
T. A. AlSkaif (Wageningen University & Research)
P. Palensky (TU Delft - Electrical Sustainable Energy)
Simon H. Tindemans (TU Delft - Intelligent Electrical Power Grids)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
operators are required to monitor and analyze these systems, raising the challenge of integration and management of large, spatially distributed time-series data that are both high-dimensional and affected by missing values. In this work, a probabilistic entity embedding-based clustering framework is proposed to address these problems. This method encodes each PV system’s characteristic power generation patterns and uncertainty as a probability distribution, then groups systems by their statistical distances and agglomerative clustering. Applied to a multi-year residential PV dataset, it produces concise, uncertainty-aware cluster profiles that outperform a physics-based baseline in representativeness and robustness, and support reliable missing-value imputation. A systematic hyperparameter study further offers practical guidance for balancing model performance and robustness.
Files
File under embargo until 30-06-2026