Modeling and Stability Analysis of Radial and Zonal Architectures of a Bipolar DC Ferry Ship
S. Yadav (TU Delft - DC systems, Energy conversion & Storage)
NH Van Der Blij (TU Delft - DC systems, Energy conversion & Storage)
Pavol Bauer (TU Delft - DC systems, Energy conversion & Storage)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Electrification of ships is one of the hot topics in the marine industry. This is due to the stringent guidelines by the International Maritime Organisation (IMO) for curbing the green house gas emissions from the marine sector. In this paper, the state-space modeling approach is used to model bipolar dc grids on ships. A ferry is used as a test case. The modeling is done for the radial and zonal architecture with similar components. The dynamic simulation and stability analysis of the two architectures reveal that zonal architecture is potentially more stable than the radial architecture.