An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games
Carlo Cenedese (Rijksuniversiteit Groningen)
Giuseppe Belgioioso (Eindhoven University of Technology)
S. Grammatico (TU Delft - Team Bart De Schutter)
Ming Cao (Rijksuniversiteit Groningen)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, we present three distributed algorithms to solve a class of Generalized Nash Equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove convergence to a v-GNE variational-GNE (vGNE) of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to a state-of-the-art algorithm solving a similar problem, and observe that AD-GENO outperforms it.