Continuous-discrete choices of control transitions and speed regulations in full-range adaptive cruise control
Silvia Varotto (TU Delft - Transport and Planning)
Haneen Farah (TU Delft - Transport and Planning)
Tomer Toledo (Technion Israel Institute of Technology)
B Van Arem (TU Delft - Transport and Planning)
Serge Hoogendoorn (TU Delft - Transport and Planning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Driving assistance systems such as Adaptive Cruise Control (ACC) and automated vehicles can contribute to mitigate traffic congestion, accidents, and levels of emissions. Automated vehicles may increase roadway capacity, improve traffic flow stability, and speed up the outflow from a queue (1). The functionalities of automated systems have been gradually introduced into the market, such as in the case of Adaptive Cruise Control (ACC). The ACC assists drivers in maintaining a desired speed and time headway, therefore influencing substantially the performance of the driving task. On-road studies have shown potential safety benefits of ACC systems that are inactive at low speeds when they are activated (2-5). In certain traffic situations, drivers may prefer to disengage ACC and resume manual control (6). These transitions between automation and manual driving are called control transitions (7) and may influence considerably traffic flow efficiency (8) and safety (9). Recently, full-range ACC systems that can operate in dense traffic have been introduced into the market. These ACC systems are more likely to be active in dense traffic conditions and have a positive impact on traffic flow efficiency