Single-Switch Soft-Switched High Voltage Gain Converter With Low Voltage Stress and Continuous Input Current

Journal Article (2025)
Author(s)

Mohammad Reza Gholami (Isfahan University of Technology)

Siamak Khalili (Isfahan University of Technology)

Hosein Farzanehfard (Isfahan University of Technology)

Ehsan Adib (Isfahan University of Technology)

H. Vahedi (TU Delft - DC systems, Energy conversion & Storage)

Research Group
DC systems, Energy conversion & Storage
DOI related publication
https://doi.org/10.1109/OJPEL.2025.3554381
More Info
expand_more
Publication Year
2025
Language
English
Research Group
DC systems, Energy conversion & Storage
Volume number
6
Pages (from-to)
551-561
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper introduces a soft-switched high step-up converter applicable to photovoltaic systems. In the proposed topology, to further improve the voltage gain and reduce the components voltage stress, coupled inductors and voltage multiplier cell (VMC) techniques are integrated with the conventional boost converter. Hence, it addresses challenges in traditional boost converter when operating at near unity duty cycle and enables it to utilize high-quality components that lead to decreased conduction losses in high-output voltage applications. Furthermore, the converter achieves soft switching operation by incorporating a lossless snubber cell, which consists of just two diodes and requires no additional switches and magnetic cores. These features contribute to enhancing the converter efficiency. Notably, the energy stored in the snubber circuit is effectively recovered to the output without any circulating current, making it a beneficial characteristic among the lossless snubber structures. The proposed topology also offers a common ground between the input and output terminals, as well as the switch which simplifies the converter control circuit. Additionally, it maintains continuous input current, which makes the proposed converter more suitable for photovoltaic system applications. To validate the converter benefits, a 150 W laboratory prototype converter is implemented.