A fast hybrid reinforcement learning framework with human corrective feedback
Carlos Celemin (TU Delft - Learning & Autonomous Control, Universidad de Santiago de Chile)
Javier Ruiz-Del-Solar (Universidad de Santiago de Chile)
J. Kober (TU Delft - Learning & Autonomous Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Reinforcement Learning agents can be supported by feedback from human teachers in the learning loop that guides the learning process. In this work we propose two hybrid strategies of Policy Search Reinforcement Learning and Interactive Machine Learning that benefit from both sources of information, the cost function and the human corrective feedback, for accelerating the convergence and improving the final performance of the learning process. Experiments with simulated and real systems of balancing tasks and a 3 DoF robot arm validate the advantages of the proposed learning strategies: (i) they speed up the convergence of the learning process between 3 and 30 times, saving considerable time during the agent adaptation, and (ii) they allow including non-expert feedback because they have low sensibility to erroneous human advice.