Unified wave field retrieval and imaging method for inhomogeneous non-reciprocal media
Kees Wapenaar (ImPhys/Acoustical Wavefield Imaging )
Christian Reinicke (TU Delft - Applied Geophysics and Petrophysics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Acoustic imaging methods often ignore multiple scattering. This leads to false images in cases where multiple scattering is strong. Marchenko imaging has recently been introduced as a data-driven way to deal with internal multiple scattering. Given the increasing interest in non-reciprocal materials, both for acoustic and electromagnetic applications, a modification to the Marchenko method is proposed for imaging such materials. A unified wave equation is formulated for non-reciprocal materials, exploiting the similarity between acoustic and electromagnetic wave phenomena. This unified wave equation forms the basis for deriving reciprocity theorems that interrelate wave fields in a non-reciprocal medium and its complementary version. Next, these theorems are reformulated for downgoing and upgoing wave fields. From these decomposed reciprocity theorems, representations of the Green's function inside the non-reciprocal medium are derived in terms of the reflection response at the surface and focusing functions inside the medium and its complementary version. These representations form the basis for deriving a modified version of the Marchenko method to retrieve the wave field inside a non-reciprocal medium and to form an image, free from artefacts related to multiple scattering. The proposed method is illustrated at the hand of the numerically modeled reflection response of a horizontally layered medium.