A 280 μW Dynamic Zoom ADC With 120 dB DR 118 dB SNDR in 1 kHz BW
S. Karmakar (TU Delft - Electronic Instrumentation)
Burak Gonen (TU Delft - Electronic Instrumentation)
Fabio Sebastiano (TU Delft - (OLD)Applied Quantum Architectures)
Robert Van Veldhoven (NXP Semiconductors)
Kofi A.A. Makinwa (TU Delft - Microelectronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a dynamic zoom analog-to-digital converter for use in low-bandwidth (<1 kHz) instrumentation applications. It employs a high-speed asynchronous successive approximation register (SAR) ADC that dynamically updates the references of a fully differential Δ Σ ADC. Compared to previous zoom ADCs, faster reference updates relax the loop filter requirements, thus allowing the adoption of energy-efficient amplifiers. Fabricated in a 0.16-μm CMOS process, the prototype occupies 0.26 mm² and achieves 119.1-dB peak signal-to-noise ratio (SNR), 118.1-dB peak signal-to-noise-and-distortion-ratio (SNDR), and 120.3-dB dynamic range (DR) in a 1-kHz bandwidth while consuming 280 μW. This results in a Schreier figure of merit (FoM) of 185.8 dB.