Data-enabled Predictive Repetitive Control
R.T.O. Dinkla (TU Delft - Team Jan-Willem van Wingerden)
T.A.E. Oomen (TU Delft - Team Jan-Willem van Wingerden, Eindhoven University of Technology)
S.P. Mulders (TU Delft - Team Mulders)
J.W. van Wingerden (TU Delft - Team Jan-Willem van Wingerden)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Many systems are subject to periodic disturbances and exhibit repetitive behaviour. Model-based repetitive control employs knowledge of such periodicity to attenuate periodic disturbances and has seen a wide range of successful industrial implementations. The aim of this paper is to develop a data-driven repetitive control method. In the developed framework, linear periodically time-varying (LPTV) behaviour is lifted to linear time-invariant (LTI) behaviour. Periodic disturbance mitigation is enabled by developing an extension of Willems’ fundamental lemma for systems with exogenous disturbances. The resulting Data-enabled Predictive Repetitive Control (DeePRC) technique accounts for periodic system behaviour to perform attenuation of a periodic disturbance. Simulations demonstrate the ability of DeePRC to effectively mitigate periodic disturbances in the presence of noise.