Improving Metaheuristic Efficiency for Stochastic Optimization by Sequential Predictive Sampling
N.J. Schutte (TU Delft - Algorithmics)
N. Yorke-Smith (TU Delft - Algorithmics)
Krzysztof Postek (TU Delft - Discrete Mathematics and Optimization)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Metaheuristics are known to be effective in finding good solutions in combinatorial optimization, but solving stochastic problems is costly due to the need for evaluation of multiple scenarios. We propose a general method to reduce the number of scenario evaluations per solution and thus improve metaheuristic efficiency. We use a sequential sampling procedure exploiting estimates of the solutions’ expected objective values. These values are obtained with a predictive model, which is founded on an estimated discrete probability distribution linearly related to all solutions’ objective distributions; the probability distribution is continuously refined based on incoming solution evaluation. The proposed method is tested using simulated annealing, but in general applicable to single solution metaheuristics. The method’s performance is compared to descriptive sampling and an adaptation of a sequential sampling method assuming noisy evaluations. Experimental results on three problems indicate the proposed method is robust overall, and performs better on average than the baselines on two of the problems.