NS
N.J. Schutte
3 records found
1
Metaheuristics are known to be effective in finding good solutions in combinatorial optimization, but solving stochastic problems is costly due to the need for evaluation of multiple scenarios. We propose a general method to reduce the number of scenario evaluations per solution
...
Optimization models used to make discrete decisions often contain uncertain parameters that are context-dependent and estimated through prediction. To account for the quality of the decision made based on the prediction, decision-focused learning (end-to-end predict-then-optimize
...
Due to the complexity of randomness, optimization problems are often modeled to be deterministic to be solvable. Specifically epistemic uncertainty, i.e., uncertainty that is caused due to a lack of knowledge, is not easy to model, let alone easy to subsequently solve. Despite th
...