Hierarchical model predictive control and moving horizon estimation for open-channel systems with multiple time delays
P. Guekam (IMT Lille Douai)
P. Segovia (TU Delft - Transport Engineering and Logistics)
L Etienne (IMT Lille Douai)
Eric Duviella (IMT Lille Douai)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This work presents the design of a hierarchical control and state estimation approach for the optimal water level management of open-channel systems using gates and pumping stations as actuators. Each reach may be characterized by a different time delay and a different prioritization of objectives. The design is divided in three layers: the upper layer determines the current operating mode. The intermediate layer is concerned with the design of appropriate controllers and observers to compute the references. Finally, the lower layer solves a scheduling problem to minimize the error between the references and the applied controls by discrete actuators. Simulation of a realistic case study based on part of the inland waterways in the north of France is used to demonstrate the effectiveness of the proposed approach.