Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis

Journal Article (2017)
Author(s)

Maarten Verhoeven (TU Delft - BT/Industriele Microbiologie)

Misun Lee (Rijksuniversiteit Groningen)

L. Kamoen (Student TU Delft)

M.A. van den Broek (TU Delft - BT/Industriele Microbiologie)

Dick B. Janssen (Rijksuniversiteit Groningen)

J.G. Daran (TU Delft - BT/Industriele Microbiologie)

Antonius J.A. van Maris (TU Delft - BT/Industriele Microbiologie)

J.T. Pronk (TU Delft - BT/Industriele Microbiologie)

Research Group
BT/Industriele Microbiologie
Copyright
© 2017 M.D. Verhoeven, Misun Lee, L. Kamoen, M.A. van den Broek, Dick B. Janssen, J.G. Daran, A.J.A. van Maris, J.T. Pronk
DOI related publication
https://doi.org/10.1038/srep46155
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 M.D. Verhoeven, Misun Lee, L. Kamoen, M.A. van den Broek, Dick B. Janssen, J.G. Daran, A.J.A. van Maris, J.T. Pronk
Research Group
BT/Industriele Microbiologie
Volume number
7
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast.