Authored

19 records found

Saccharomyces cerevisiae strains tor second-generation ethanol production

From academie exploration to industrial implementation

The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challe ...

Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:

Pathway stoichiometry, free-­energy conservation and redox-cofactor balancing

Excessive by-product formation

A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

Excessive by-product formation

A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

Background: l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important r ...
NAD(P)-malic enzyme (NAD(P)-ME) catalyzes the reversible oxidative decarboxylation of malate to pyruvate, CO2, and NAD(P)H and is present as a multigene family in Arabidopsis thaliana. The carboxylation reaction catalyzed by purified recombinant Arabidopsis NADP-ME proteins is fa ...
Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free syn ...
Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to m ...
Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose tra ...
Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasi ...
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent p ...
CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, ...
Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that ...
Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology ...
Background: Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease ...
Background: Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic ...

Contributed

1 records found

The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae yeast strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. In contrast to the ferment ...