Proxy functions for Approximate Reinforcement Learning
Eduard Alibekov (Czech Technical University)
Jiřì Kubalìk (Czech Technical University)
R Babuška (TU Delft - Learning & Autonomous Control, Czech Technical University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Approximate Reinforcement Learning (RL) is a method to solve sequential decisionmaking and dynamic control problems in an optimal way. This paper addresses RL for continuous state spaces which derive the control policy by using an approximate value function (V-function). The standard approach to derive a policy through the V-function is analogous to hill climbing: at each state the RL agent chooses the control input that maximizes the right-hand side of the Bellman equation. Although theoretically optimal, the actual control performance of this method is heavily influenced by the local smoothness of the V-function; a lack of smoothness results in undesired closed-loop behavior with input chattering or limit-cycles. To circumvent these problems, this paper provides a method based on Symbolic Regression to generate a locally smooth proxy to the V-function. The proposed method has been evaluated on two nonlinear control benchmarks: pendulum swing-up and magnetic manipulation. The new method has been compared with the standard policy derivation technique using the approximate V-function and the results show that the proposed approach outperforms the standard one with respect to the cumulative return.