EA
Eduard Alibekov
6 records found
1
Approximate Reinforcement Learning (RL) is a method to solve sequential decisionmaking and dynamic control problems in an optimal way. This paper addresses RL for continuous state spaces which derive the control policy by using an approximate value function (V-function). The stan
...
This paper addresses the problem of deriving a policy from the value function in the context of critic-only reinforcement learning (RL) in continuous state and action spaces. With continuous-valued states, RL algorithms have to rely on a numerical approximator to represent the va
...
Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings.
...
This paper addresses the problem of deriving a policy from the value function in the context of reinforcement learning in continuous state and input spaces. We propose a novel method based on genetic programming to construct a symbolic function, which serves as a proxy to the val
...
State-of-the-art critic-only reinforcement learning methods can deal with a small discrete action space. The most common approach to real-world problems with continuous actions is to discretize the action space. In this paper a method is proposed to derive a continuous-action pol
...
This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and
...