Prediction of Photovoltaic System Adoption at Building Scale in the Netherlands

Master Thesis (2022)
Author(s)

T.C. Wierikx (TU Delft - Civil Engineering & Geosciences)

Contributor(s)

R. C. Lindenbergh – Mentor (TU Delft - Optical and Laser Remote Sensing)

Marc Schleiss – Graduation committee member (TU Delft - Atmospheric Remote Sensing)

E Verbree – Graduation committee member (TU Delft - GIS Technologie)

Otto Fabius – Graduation committee member

Faculty
Civil Engineering & Geosciences
Copyright
© 2022 Thomas Wierikx
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Thomas Wierikx
Graduation Date
16-11-2022
Awarding Institution
Delft University of Technology
Programme
Geoscience and Remote Sensing
Faculty
Civil Engineering & Geosciences
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Understanding the characteristics of photovoltaic system (PV) adopters can help policymakers realise energy transition more effectively. In this study, we developed a model that predicts PV adoption per building using geometric and socioeconomic variables. Seven geometric variables were created by processing building registration data, airborne laser scanning data and 3D building models based on airborne laser scanning data. Additionally, eight socioeconomic variables were generated from building registration data and socioeconomic postal code statistics. The random forest machine learning model, which was trained and evaluated on 646 000 buildings in the province of Overijssel, The Netherlands, displays good overall performance with an AUC of 0.77. Moreover, the model demonstrates that buildings have an increased probability of PV adoption if they (i) have a suitable area above 30 m2, (ii) have a rooftop higher than 6 m, (iii) have a non-flat roof, (iv) were built after 1970, (v) only have one address registered and (vi) are used for residence. Similar experiments involving a different type of machine learning model (i.e. a neural network) and province (i.e. North Holland) yield similar results. Future improvements of the model could focus on increasing performance in residential areas and studying the effect of PV stimulation by including a temporal component.

Files

License info not available