Memristor-based neural network accelerators for space applications
Enhancing performance with temporal averaging and SIRENs
Z.A. Rudge (European Space Agency (ESA), TU Delft - Computer Engineering)
Dominik Dold (University of Vienna)
M. Fieback (TU Delft - Computer Engineering)
Dario Izzo (European Space Agency (ESA))
S. Hamdioui (TU Delft - Computer Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Memristors are an emerging technology that enables artificial intelligence (AI) accelerators with high energy efficiency and radiation robustness — properties that are vital for the deployment of AI on-board spacecraft. However, space applications require reliable and precise computations, while memristive devices suffer from non-idealities, such as device variability, conductance drifts, and device faults. Thus, porting neural networks (NNs) to memristive devices often faces the challenge of severe performance degradation. In this work, we show in simulations that memristor-based NNs achieve competitive performance levels on on-board tasks, such as navigation & control and geodesy of asteroids. Through bit-slicing, temporal averaging of NN layers, and periodic activation functions, we improve initial results from around 0.07 to 0.01 and 0.3 to 0.007 for both tasks using RRAM devices, coming close to state-of-the-art levels (0.003−0.005 and 0.003, respectively). Our results demonstrate the potential of memristors for on-board space applications, and we are convinced that future technology and NN improvements will further close the performance gap to fully unlock the benefits of memristors.
Files
File under embargo until 21-04-2026