Empirical formulation for debris flow impact and energy release
Angela Di Perna (University of Salerno)
Sabatino Cuomo (University of Salerno)
Mario Martinelli (TU Delft - Dynamics of Structures, Deltares)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Full understanding the interaction mechanisms between flow-like landslides and the impacted protection structures is an open issue. While several approaches, from experimental to numerical, have been used so far, it is clear that the adequate assessment of the hydromechanical behaviour of the landslide body requires both a multiphase and large deformation approach. This paper refers to a specific type of protection structure, namely a rigid barrier, fixed to the base ground. Firstly, a framework for the Landslide-Structure-Interaction (LSI) is outlined with special reference to the potential barrier overtopping (nil, moderate, large) depending on the features of both the flow and the barrier. Then, a novel empirical method is casted to estimate the impact force on the barrier and the time evolution of the flow kinetic energy. The new method is calibrated by using an advanced hydro-mechanical numerical model based on the Material Point Method. The validation of the empirical formulation is pursued referring to a large dataset of field evidence for the peak impact pressure. Both numerical and empirical methods can appropriately simulate the physical phenomena. The performance of the newly proposed empirical method is compared to the literature methods and its advantages are outlined.