Improved Performance and Voltage Stability of Islanded Inverters Using Single-Loop PI-Lead Controller
Mohammed E. Benzoubir (University of Amar Telidji)
Abderezak Lashab (Aalborg University)
Khaled Rayane (University of Amar Telidji)
Mohammed Benmiloud (University of Amar Telidji)
Mohamed Bougrine (University of Amar Telidji)
Atallah Benalia (University of Amar Telidji)
M. Trabelsi (Kuwait College of Science and Technology)
H. Vahedi (TU Delft - DC systems, Energy conversion & Storage)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper introduces a novel single-loop control scheme for voltage regulation in islanded inverters, using a proportional-integral-lead (PI-Lead) controller designed within the synchronous reference frame (SRF) through a loop-shaping approach. Commonly, dual-loop controllers have been employed for this purpose owing to several limitations, such as insufficient stability with a narrow gain margin, a trade-off between stability and bandwidth, and constrained bandwidth due to the need for a significantly lower outer voltage loop bandwidth compared to the inner current one. The proposed method overcomes these challenges by integrating a Lead compensator, which enhances voltage regulation by eliminating steady-state error, improving stability margins, and providing a fast transient response while maintaining robustness against model parameter variations. Additionally, the control strategy reduces dependence on current measurements, except when dealing with inductive loads where virtual resistor-based active damping is necessary. Despite the challenges posed by multi-resonance phenomena and coupling effects inherent in single-loop SRF-based modeling, a comprehensive frequency-domain analysis is performed, with systematic controller parameter design guidelines to mitigate multi-gain crossover issues. Rigorous experimental results validate the theoretical findings and simulations, demonstrating the superior performance and practical effectiveness of the proposed control strategy compared to existing methods.