Rational Basis Functions in Iterative Learning Control for Multivariable Systems

More Info
expand_more

Abstract

Feedforward control with task flexibility for MIMO systems is essential to meet ever-increasing demands on throughput and accuracy. The aim of this paper is to develop a framework for data-driven tuning of rational feedforward controllers in iterative learning control (ILC) for noncommutative MIMO systems. A convex optimization problem in ILC is achieved by rewriting the nonlinear terms in the control scheme as a function of the previous feedforward parameters. A simulation study on an multivariable industrial printer shows that the developed framework converges and achieves significant better performance than direct application of the RBF algorithm using SK-iterations for SISO systems.