A new mixed mode I/II failure criterion for laminated composites considering fracture process zone
Z. Daneshjoo (Iran University of Science and Technology)
M. M. Shokrieh (Iran University of Science and Technology)
M. Fakoor (University of Tehran)
R. C. Alderiesten (TU Delft - Structural Integrity & Composites)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, by considering the absorbed energy in the fracture process zone and extension of the minimum strain energy density theory for orthotropic materials, a new mixed mode I/II failure criterion was proposed. The applicability of the new criterion, to predict the crack growth in both laminated composites and wood species, was investigated. By defining a suitable damage factor and using the mixed mode I/II micromechanical bridging model, the absorbed energy in the fracture process zone was considered. It caused the new criterion to be more compatible with the nature of the failure phenomena in orthotropic materials, unlike available ones that were conservative. A good agreement was obtained between the fracture limit curves extracted by the present criterion and the available experimental data. The theoretical results were also compared with those of the minimum strain energy density criterion to show the superiority of the newly proposed criterion.