The link transmission model with variable fundamental diagrams and initial conditions
JPT van der Gun (TU Delft - Transport and Planning)
Adam Pel (TU Delft - Transport and Planning)
Bart Van Arem (TU Delft - Transport and Planning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The link transmission model is a macroscopic network traffic flow simulation tool based on Lighthill–Whitham–Richards theory. While its efficiency and accuracy are superior to the well-known cell transmission model, applications of its current numerical formulations are limited by the inability to apply changes to the fundamental diagrams of links within a simulation and the need to start the simulation with an empty network. We resolve both limitations by developing a methodology for initialising the discrete-time link model with a non-empty initial condition and for computing within-link densities during the simulation, which can then serve as an initial condition for continued simulation with a new fundamental diagram. Since the computation of within-link densities is algebraic, no new numerical errors are introduced. Optional support for multiple commodities, subcritical delays and platoon dispersion, are retained. The resulting model is demonstrated on a motorway corridor network with variable speed limits and dynamic lane management.