Probability of Delamination Detection for CFRP DCB Specimens Using Rayleigh Distributed Optical Fiber Sensors
More Info
expand_more
Abstract
Distributed Optical Fiber Sensors (DOFS) show several inherent benefits with respect to conventional strain-sensing technologies and represent a key technology for Structural Health Monitoring (SHM). Despite the solid motivation behind DOFS-based SHM systems, their implementation for real-time structural assessment is still unsatisfactory outside academia. One of the main reasons is the lack of rigorous methodologies for uncertainty quantification, which hinders the performance assessment of the monitoring system. The concept of Probability of Detection (POD) should function as the guiding light in this process, but precautions must be taken to apply this concept to SHM, as it has been originally developed for Non-Destructive Evaluation techniques. Although DOFS have been the object of numerous studies, a well-established methodology for their performance evaluation in terms of PODs is still missing. In the present work, the concept of Probability of Delamination Detection (POD2) is proposed for a DOFS network; Carbon Fiber-Reinforced Polymers (CFRP) Double-Cantilever Beam (DCB) specimens equipped with DOFS have been tested under static loading, and the strain patterns along with the relative observed delamination size have been collected to generate an adequate database for the POD analysis, suggesting a reference methodology to quantify the performance of DOFS for delamination detection.