Magnetoelastic transition and negative thermal expansion of Fe2Hf0.83Ta0.17 ribbons
Qi Shen (TU Delft - RST/Fundamental Aspects of Materials and Energy)
Fengqi Zhang (TU Delft - RST/Fundamental Aspects of Materials and Energy)
AI Dugulan (TU Delft - RID/TS/Instrumenten groep, TU Delft - RST/Fundamental Aspects of Materials and Energy)
N. H. Dijk (TU Delft - RST/Fundamental Aspects of Materials and Energy)
EH Brück (TU Delft - RST/Fundamental Aspects of Materials and Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this work, the magnetocaloric effect and negative thermal expansion in melt-spun Fe2Hf0.83Ta0.17 Laves phase alloys were studied. Compared to arc-melted alloys, which undergo a first-order magnetoelastic transition from the ferromagnetic to the antiferromagnetic phase, melt-spun alloys exhibit a second-order transition. For Fe2Hf0.83Ta0.17 ribbons, we observed a large volumetric coefficient of negative thermal expansion of −19 × 10−6 K−1 over a wide temperature range of 197 – 297 K and a moderate adiabatic temperature change of 0.7 K at 290 K for a magnetic field change of 1.5 T. The magnetic field dependence of the transition temperature (dTt/dµ0H = 4.4 K/T) for the melt-spun alloy is about half that of the arc-melted alloy (8.6 K/T). The origin of second-order phase transition of the melt-spun alloy is attributed to the partially suppressed frustration effect, which is due to the atomic disorder introduced by the rapid solidification.