Nv
N.H. van Dijk
90 records found
1
The (Mn,Fe)2(P,Si) compounds are one of the rare materials systems that exhibit an isostructural first-order ferromagnetic transition (FOMT) near ambient temperature. Since the discovery of its giant magnetocaloric effect (GMCE), this system is garnering ongoing intere
...
Zero thermal expansion (ZTE) materials, which maintain a constant length despite temperature variations, are highly desirable for advanced industrial applications. This chapter highlights recent progress in exploring ZTE behaviour in Fe-based Laves phases, La-Fe-Si(Al)-based allo
...
Magnetocaloric refrigeration is one of the most promising next-generation solid-state caloric techniques to revolutionize the traditional air-compression technique. The La(Fe,Si)13-based materials are recognized as candidates with potential for practical applications. However, fl
...
The formation of nanoscale vanadium carbide (VC) precipitates is reported in steels subjected to two different thermal treatments. The thermal treatments lead to either interphase precipitation (IP) or random precipitation (RP). Small-angle neutron scattering measurements coupled
...
Recently, the promising multi-component magnetocaloric materials (Mc-MCMs) are found to have a tunable giant magnetocaloric effect (GMCE) near room-temperature and manifest fruitful functionalities like multi-caloric effects, which are candidates for solid-state caloric applicati
...
In-situ time-resolved small-angle neutron scattering (SANS) experiments were conducted on homogenised cold-rolled ternary Fe-Au-W alloys during aging for 12 h at temperatures of 650 to 700 °C in order to study the kinetics of the nanoscale precipitation. For comparison the precip
...
The hexagonal Mn3−xFexSn compounds possess several desirable properties that make them suitable magnetocaloric materials, including a ferromagnetic (FM)-to-paramagnetic (PM) transition near room temperature and soft magnetic behavior. In this study, we use themelt-spinning techni
...
Zero thermal expansion (ZTE) materials, which maintain a constant length despite temperature variations, are highly desirable for advanced industrial applications. This review highlights recent progress in exploring ZTE behavior in Fe-based Laves phases, La–Fe–Si(Al)-based alloys
...
Zero thermal expansion (ZTE) materials with the advantage of an invariable length with varying temperatures are in high demand for modern industry but are relatively rare for metals. Fe-based Laves phases attract significant attention due to the rich and intriguing physical prope
...
The emerging all-d-metal Ni(Co)MnTi-based Heusler compounds attract extensive attention because it can potentially be employed for solid-state refrigeration. However, in comparison to the abundant physical functionalities in bulk conditions, the hidden properties related to the N
...
The Fe2P type Mn–Fe–P–Si alloys exhibit a giant magneto-elastic first-order transition, but the large hysteresis limits their performance. Crystal structure evolution and magnetocaloric performance were investigated by varying the Mn and Fe contents at a constant V sub
...
The transition-metal based alloy system YNi
4-xCo
xSi shows a second-order ferromagnetic-to-paramagnetic transition near room temperature. Here, the magnetic structure, the magnetocaloric properties and the magnetic anisotropy of
...
The magnetocaloric properties of Mn5Si1-xPxB2 (0 ≤ x ≤ 1) compounds were studied for energy harvesting applications. The crystal structure and the magnetic structure were characterized by powder X-Ray Diffraction and powder Neutron Diff
...
Advanced Magnetocaloric Materials for Energy Conversion
Recent Progress, Opportunities, and Perspective
Solid-state caloric effects as intrinsic thermal responses to different physical external stimuli (magnetic-, uniaxial stress-, pressure-, and electric-fields) can achieve a higher energy efficiency compared with traditional gas compression techniques. Among these effects, magnet
...
Compared with traditional techniques, solid-state magnetocaloric phase transition materials (MPTMs), based on the giant magnetocaloric effect (GMCE), can achieve a higher energy conversion efficiency for caloric applications. As one of the most promising MPTMs, the hexagonal (Mn,
...
Recently, the all-d-metal Ni(Co)MnTi based Heusler compounds are found to have a giant magnetocaloric effect (GMCE) near room temperature and manifest different functionalities like multicaloric effects, which can be employed for solid-state refrigeration. However, in comparison
...
The influence of off-stoichiometry and of doping with the 5d transition metal Ta has been studied in the quaternary (Mn,Fe)2(P,Si)-based compound, which is one of the most promising materials systems for magnetic refrigeration. It is found that Ta substitution can decr
...
Structural, magnetic and magnetocaloric properties of Mn3Sn1-xZnxC antiperovskite carbides have been studied. With increasing Zn content the first-order magnetic transition (FOMT) is weakened. The Curie temperature (TC) reduc
...
The transition-metal based Laves phase materials represent an extended family of alloys with rich and fascinating physical properties. In this work, we have investigated the negative thermal expansion and magnetocaloric effect in arc-melted and melt-spun Fe2Hf1-
...
The influence of doping with the 5d transition metal W has been studied in the quaternary (Mn,Fe)2(P,Si) based giant magnetocaloric compounds, which is one of the most promising systems for magnetic refrigeration. It is found that W substitution can separately decrease
...