QS

Authored

10 records found

In the field of nanoscale magnetocaloric materials, novel concepts like micro-refrigerators, thermal switches, microfluidic pumps, energy harvesting devices and biomedical applications have been proposed. However, reports on nanoscale (Mn,Fe)2(P,Si)-based materials, which are one ...
The magnetocaloric properties of Mn5Si1-xPxB2 (0 ≤ x ≤ 1) compounds were studied for energy harvesting applications. The crystal structure and the magnetic structure were characterized by powder X-Ray Diffraction and powder Neutron Diffraction. The results indicate that these mag ...
The influence of doping with the 5d transition metal W has been studied in the quaternary (Mn,Fe)2(P,Si) based giant magnetocaloric compounds, which is one of the most promising systems for magnetic refrigeration. It is found that W substitution can separately decrease the Curie ...
The transition-metal based Laves phase materials represent an extended family of alloys with rich and fascinating physical properties. In this work, we have investigated the negative thermal expansion and magnetocaloric effect in arc-melted and melt-spun Fe2Hf1-xTix (x = 0.15, 0. ...
The influence of partial substitution of Bi for Sb on the structure, magnetic properties and magnetocaloric effect of Mn2Sb1-xBix (x = 0, 0.02, 0.04, 0.05, 0.07, 0.09, 0.15, 0.20) compounds has been investigated. The transition temperature of the antiferro-to-ferrimagnetic (AFM-F ...
In this work, the magnetocaloric effect and negative thermal expansion in melt-spun Fe2Hf0.83Ta0.17 Laves phase alloys were studied. Compared to arc-melted alloys, which undergo a first-order magnetoelastic transition from the ferromagnetic to the antiferromagnetic phase, melt-sp ...
The novel all-d-metal Ni(Co)MnTi based magnetic Heusler alloys provide an adjustable giant magnetocaloric effect and good mechanical properties. We report that the second-order magnetic phase transition can be tailored in this all-d-metal NiCoMnTi based Heusler system by optimizi ...
Magnetic refrigeration is based on the magnetocaloric effect (MCE) and has attracted considerable attention due to its potentially higher energy efficiency, environmental friendliness and quietness compared to conventional vapour compression refrigeration. Boosting giant MCE mate ...
The influence of excess Mn on the magnetoelastic ferromagnetic-to-antiferromagnetic transition Tt in the magnetocaloric compound (Mn,Cr)2Sb has been studied. With increasing excess Mn the magnetoelastic transition temperature for (Mn,Cr)2Sb initially increases and then decreases. ...
The quarternary (Mn,Fe)2(P,Si)-based materials with a giant magnetocaloric effect (GMCE) at the ferromagnetic transition TC are promising bulk materials for solid-state magnetic refrigeration. In the present study we demonstrate that doping with the light elements fluorine and su ...