Strategic design of multi-actor nascent energy and industrial infrastructure networks under uncertainty
Y.G. Melese (TU Delft - Energy and Industry)
P.M. Herder – Promotor (TU Delft - Energy and Industry)
R.M. Stikkelman – Copromotor (TU Delft - Energy and Industry)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This thesis focuses on the design of nascent energy and industrial infrastructure networks: networks that still needed to be built and for which neither scope, size, nor participants were certain. It develops systematic design analysis approaches to help improve design under uncertainty by means of flexibility. There are four parts to the thesis. The first part focuses on understanding the concept of flexible design and its application to the design of engineering systems and energy infrastructure networks. The second part focuses on flexibility analysis with the objective of improving their lifetime performance in the face of uncertain design requirements. A systematic engineering design approach combining graph theory network modelling, exploratory modelling and real options is proposed to explore candidate designs, identify valuable flexibility enablers and appreciate the value of flexible design strategies. The third part considers the role of risk sharing when actors co-invest in infrastructure networks under uncertain environment. Contractual arrangements are modelled between actors as a cooperative game and analyses the effects of uncertainty. The fourth part focuses on how private and public actors may enhance desired performances when developing new energy and industrial infrastructure networks under uncertainty.