Capacity of prestressed concrete bridge decks under fatigue loading
Eva O. L. Lantsoght (TU Delft - Concrete Structures, Universidad San Francisco de Quito)
C Van Der Veen (TU Delft - Concrete Structures)
Rutger Koekkoek (BAM)
Henk Sliedrecht (Rijkswaterstaat)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In The Netherlands, existing slab-between-girder bridges with prestressed girders and thin transversely prestressed concrete decks require assessment. The punching capacity was studied in a previous series of experiments, showing a higher capacity thanks to compressive membrane action in the deck. Then, concerns were raised with regard to fatigue loading. To address this, two series of large-scale experiments were carried out, varying the number of loads (single wheel print versus double wheel print), the loading sequence (constant amplitude versus variable amplitude, and different loading sequences for variable amplitude), and the distance between the prestressing ducts. An S-N curve is developed for the assessment of slab-between-girder bridges. The experiments showed that compressive membrane actions enhances the capacity of thin transversely prestressed decks subjected to fatigue loading.