Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
More Info
expand_more
Abstract
To move towards a condition-based maintenance practice for aircraft structures, design of reliable health management methodologies is required. Development of diagnostic methodologies is commonly realised on simplified sample structures with assumptions that methodologies can be adapted for application to realistic aircraft structures under in-service conditions. Yet such actual applications are not conducted. In this work, we study the development of diagnostic methodologies to training structures and their application to dissimilar testing structures. A heterogeneous population is considered, consisting of single-stiffener composite panels for methodology development and training and a multi-stiffener composite panel for application and testing. Characteristics as its composite material, lay-up, and temperature condition are constant while topologies and applied loads differ between the dissimilar structures. Damage in the structural panels is monitored on multiple diagnostic levels using a variety of structural health monitoring (SHM) techniques, including acoustic emission and distributed strain sensing. Specifically, we develop diagnostic methods for localising and monitoring disbond growth after impact using strain data collected during fatigue testing of multiple single-stiffener panels and apply these for disbond monitoring in an upscaled version of a multi-stiffener panel. In this manner, this study aids in the maturement and application of SHM methodologies to realistic aircraft structures.