Damage Diagnostics of a Composite Single-Stiffener Panel Under Fatigue Loading Utilizing SHM Data Fusion
More Info
expand_more
Abstract
A case study is presented in which the first steps are made towards the development of a structural health monitoring (SHM) data fusion framework. For this purpose, a composite single-stiffener panel is subjected to compression-compression fatigue loading (R = 10). The carbon-epoxy panel contains an artificial disbond of 30 mm, which was created using a Teflon insert during manufacturing and placed between the skin and the stiffener foot. Under the applied fatigue load, the disbond is expected to grow and its propagation is monitored using two SHM techniques, namely acoustic emission (AE) and Rayleigh-scattering based distributed fiber optic strain sensing. Four AE sensors are placed on the skin, thereby allowing for disbond growth detection and localization. On each stiffener foot, fiber optic sensors are surface-bonded to monitor the growth of the disbond under the applied fatigue loading. The distributed strain measurements are used to localize and monitor the disbond growth. The strength of each technique is utilized by fusing the data from the AE sensors and the fiber optic sensors. In this manner, a data-driven approach is presented in which a data fusion of the different techniques allows for monitoring the damage in the stiffened panel on multiple SHM levels, including disbond growth detection and localization.