Understanding the Information Content in the Hierarchy of Model Development Decisions

Learning From Data

Journal Article (2021)
Author(s)

Shervan Gharari (University of Saskatchewan)

Hoshin V. Gupta (University of Arizona)

Martyn P. Clark (University of Saskatchewan)

Markus Hrachowitz (TU Delft - Water Resources)

Fabrizio Fenicia (Eawag - Swiss Federal Institute of Aquatic Science and Technology)

Patrick Matgen (Luxembourg Institute of Science and Technology)

H.H.G. Savenije (TU Delft - Water Resources)

Research Group
Water Resources
Copyright
© 2021 Shervan Gharari, Hoshin V. Gupta, Martyn P. Clark, M. Hrachowitz, Fabrizio Fenicia, Patrick Matgen, Hubert Savenije
DOI related publication
https://doi.org/10.1029/2020WR027948
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 Shervan Gharari, Hoshin V. Gupta, Martyn P. Clark, M. Hrachowitz, Fabrizio Fenicia, Patrick Matgen, Hubert Savenije
Research Group
Water Resources
Issue number
6
Volume number
57
Pages (from-to)
1-35
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Process-based hydrological models seek to represent the dominant hydrological processes in a catchment. However, due to unavoidable incompleteness of knowledge, the construction of “fidelius” process-based models depends largely on expert judgment. We present a systematic approach that treats models as hierarchical assemblages of hypotheses (conservation principles, system architecture, process parameterization equations, and parameter specification), which enables investigating how the hierarchy of model development decisions impacts model fidelity. Each model development step provides information that progressively changes our uncertainty (increases, decreases, or alters) regarding the input-state-output behavior of the system. Following the principle of maximum entropy, we introduce the concept of “minimally restrictive process parameterization equations—MR-PPEs,” which enables us to enhance the flexibility with which system processes can be represented, and to thereby investigate the important role that the system architectural hypothesis (discretization of the system into subsystem elements) plays in determining model behavior. We illustrate and explore these concepts with synthetic and real-data studies, using models constructed from simple generic buckets as building blocks, thereby paving the way for more-detailed investigations using sophisticated process-based hydrological models. We also discuss how proposed MR-PPEs can bridge the gap between current process-based modeling and machine learning. Finally, we suggest the need for model calibration to evolve from a search over “parameter spaces” to a search over “function spaces.”.