Circular Image

M. Hrachowitz

133 records found

The migration of birds through a stopover site may be understood as a physical process of hydrological flow through a reservoir whose water levels rise and fall over a migration period. Hydrological flow models show promise as a way of integrating information on storage (daily co ...
The temporal dynamics of water ages provide crucial insights into hydrological processes and transport mechanisms, yet there remains a significant gap in quantifying water age variability across different temporal scales. This study utilizes a comprehensive dataset spanning 70 ye ...
Quantification of precipitation partitioning into evaporation and runoff is crucial for predicting future water availability. Within the widely used Budyko framework, which relates the long-term aridity index to the long-term evaporative index, curvilinear relationships between t ...
The consistency of hydrological models, i.e. their ability to reproduce observed system dynamics, needs to be improved to increase their predictive power. As using streamflow data alone to calibrate models is not sufficient to constrain them and render them consistent, other stra ...
The water balance of catchments will, in many cases, strongly depend on its state in the recent past (e.g. previous days). Processes causing significant hydrological memory may persist at longer timescales (e.g. annual). The presence of such memory could prolong drought and flood ...
Adaptation of ecosystems’ root zones to climate change critically affects drought resilience and vegetation productivity. However, a global quantitative assessment of this mechanism is missing. In this study, we analyzed high-quality observation-based data to find that the global ...
While measured streamflow is commonly used for hydrological model evaluation and calibration, an increasing amount of data on additional hydrological variables is available. These data have the potential to improve process consistency in hydrological modeling and consequently for ...
Vegetation roots play an essential role in regulating the hydrological cycle by removing water from the subsurface and releasing it to the atmosphere. However, the present understanding of the drivers of ecosystem-scale root development and their spatial variability globally is l ...
Vegetation plays a crucial role in regulating the water cycle through transpiration, which is the water flux from the subsurface to the atmosphere via roots. The amount and timing of transpiration is controlled by the interplay of seasonal energy and water supply. The latter stro ...

Probabilistic characterizations of flood hazards in deltas

Application to Hoek van Holland (Netherlands)

Coastal flooding events pose a critical risk in delta areas, since they are characterized by population growth and urban expansion. A better understanding of Extreme Water Levels (EWLs), the mechanisms generating them, and their components, i.e., astronomical tide and storm surge ...
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions–whether it be too little, too much or too polluted. Many of the current issues originate from global ch ...

Catchment response to climatic variability

Implications for root zone storage and streamflow predictions

This paper investigates the influence of multi-decadal climatic variability on the temporal evolution of root zone storage capacities (Sr,max) and its implications for streamflow predictions in the Meuse basin. Through a comprehensive analysis of 286 catchments across Europe and ...

EStreams

An integrated dataset and catalogue of streamflow, hydro-climatic and landscape variables for Europe

Large-sample hydrology datasets have become increasingly available, contributing to significant scientific advances. However, in Europe, only a few such datasets have been published, capturing only a fraction of the wealth of information from national data providers in terms of a ...
Climatic variability can considerably affect catchment-scale root zone storage capacity (S umax), which is a critical factor regulating latent heat fluxes and thus the moisture exchange between land and atmosphere as well as the hydrological response and ...
This study quantifies the field hydraulic performance of a dual-functionality landfill cover, combining microbial methane oxidation with water diversion using a capillary barrier. The investigated 500 m2 test field, constructed on a landfill in the Netherlands, consisted of a cov ...
In this study, we propose a probabilistic metric, the formative drought rate (FDR), to quantify drought propagation. It is the probability that a meteorological drought in precipitation forms a hydrological drought in streamflow. Drought events were identified based on the standa ...
The root zone is a vital part of the Earth system and a key element in hydrology, ecology, agronomy, and land surface processes. However, its definition varies across disciplines, creating barriers to interdisciplinary understanding. Moreover, characterizing the root zone is chal ...
Catchment modelling has undergone tremendous developments during the past decades. In the 1970s, the focus was on simulation of catchment runoff with process descriptions and data inputs being lumped to the catchment scale. Later developments included spatially distributed models ...
Streamflow predictions remain a challenge for poorly gauged and ungauged catchments. Recent research has shown that deep learning methods based on Long Short-Term Memory (LSTM) cells outperform process-based hydrological models for rainfall-runoff modeling, opening new possibilit ...
Debris-flow activity is strongly controlled by hydro-meteorological trigger conditions, which are expected to change in a future climate. In this study we connect a regional hydro-meteorological susceptibility model for debris flows with climate projections until 2100 to assess c ...