A Circular Approach for the Fire Safety Design in Mass Timber Buildings

Balancing the impact between material use and fire risk

More Info
expand_more

Abstract

The building industry consumes a lot of material, which causes depletion of material stocks, toxic emissions, and waste. Circular building design can help to reduce this impact, by moving from a linear to a circular design approach.
To reach a circular build environment, all disciplines should be involved, including fire safety design. However, there is a contradiction between the objectives of circular and fire safety design, either affecting the aim of protection of material sources, or protection against fire risk.

Timber is a material that has high potential in contributing to a circular building industry, as it is renewable, recyclable and can store CO2. However, timber is combustible, which increases the risk of fire. Therefore, mass timber building design has traditionally been restricted by building regulations. To enhance mass timber building design research on timber buildings has increased, to allow understanding of the risks. However, yet general guidelines or understanding on the fire behaviour and risk in timber buildings is lacking. This is a problem for the fire safety design and the potentials of timber contributing to a circular building industry.

Until now, there was no specific method available that quantifies this relation between material use and fire risk in mass timber buildings. This limits the possibility of fire safety design and mass timber design to contribute to a more circular building industry. By creating a method that allows comparison between the economic and environmental impact of material use and fire risk, a well-founded choice of building materials is easier to make.

The design tool created in this research quantifies the impact on material use for fire safety measures relating to CLT, encapsulation and sprinkler availability and their effect on the fire risk in mass timber buildings. This way insight is provided between the balance of material use and fire risk. By the sum of the impact on material use and fire risk, the total “circular fire safety impact” value is calculated. This value represents the total economic and environmental impact of the design based on the choice of building materials. By changing the fire safety design, the most optimal design variant can be determined. This is the variant with the lowest total impact value.

This way, a circular design approach is used to steer fire safety design in mass timber buildings towards a design solution that does not only provide sufficient safety for people, but also provides maximum economic and environmental safety from a material point of view.