The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms
An experimental and Monte Carlo simulation study
Nan Jiang (TU Delft - Sanitary Engineering)
Máté Erdös (TU Delft - Engineering Thermodynamics)
Othon Moultos (TU Delft - Engineering Thermodynamics)
R. Shang (TU Delft - Sanitary Engineering)
Thijs J.H. Vlugt (TU Delft - Engineering Thermodynamics)
S. G.J. Heijman (TU Delft - Sanitary Engineering)
LC Rietveld (TU Delft - Sanitary Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The adsorption of organic micropollutants (OMPs) on high-silica zeolites is characterized by adsorption isotherms with various shapes. The occurrence of an S-shaped adsorption isotherm indicates the lack of adsorption affinity for OMPs at low, environmentally relevant equilibrium concentrations. In this study, S-shaped isotherms were observed during batch experiments with 2,4,6-trichlorophenol (TCP) and FAU zeolites. This is the first time that an S-shaped isotherm is reported for the adsorption of OMPs on high-silica zeolites. Monte Carlo (MC) simulations in the grand-canonical ensemble were used to obtain a better understanding of the mechanism of the S-shaped adsorption isotherms. From the MC simulation results, it was observed that multiple TCP molecules were adsorbed in the supercages of the FAU zeolites. It was found that the π-π interactions between TCP molecules give rise to the adsorption of multiple TCP molecules per supercage, and thus causing an S-shaped adsorption isotherm. Simulations also revealed that water molecules were preferentially adsorbed in the supercages and sodalite cages of the FAU zeolites. FAU zeolites with a higher Al content adsorbed a higher amount of water molecules and a lower amount of TCP, and showed less pronounced S-shaped isotherms.