Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging

Journal Article (2020)
Author(s)

M. Mozaffarzadeh (TU Delft - ImPhys/Medical Imaging)

C.G. Minonzio (TU Delft - ImPhys/Medical Imaging)

Nico de de Jong (TU Delft - ImPhys/Medical Imaging, Erasmus MC)

M.D. Verweij (TU Delft - ImPhys/Medical Imaging, Erasmus MC)

Simone Hemm (University of Applied Sciences and Arts Northwestern Switzerland)

V. Daeichin (TU Delft - ImPhys/Medical Imaging)

Research Group
ImPhys/Medical Imaging
Copyright
© 2020 M. Mozaffarzadeh, C.G. Minonzio, N. de Jong, M.D. Verweij, Simone Hemm, V. Daeichin
DOI related publication
https://doi.org/10.1109/TUFFC.2020.3007345
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 M. Mozaffarzadeh, C.G. Minonzio, N. de Jong, M.D. Verweij, Simone Hemm, V. Daeichin
Research Group
ImPhys/Medical Imaging
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
1
Volume number
68
Pages (from-to)
84-91
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.

Files

09133444taverne.pdf
(pdf | 1.65 Mb)
- Embargo expired in 06-01-2021
License info not available